Poisson Distribution – Formula, Graphs & Examples

27.01.23 Statistics Time to read: 6min

How do you like this article?

0 Reviews


Poisson-distribution-Definition

The Poisson distribution is named after the French mathematician Siméon Denis Poisson who developed this type of model of probability distribution in the 19th century. It is a fundamental concept in probability theory and statistics, commonly used to model events occurring randomly in a fixed interval of time or space. In this article, you will learn what distinguishes this form of statistical distribution from other models, the formula that is needed to calculate it, and what it looks like when displayed on a graph with numerous examples.

Poisson Distribution – In a Nutshell

  • An event can happen any number of times within the given time full stop.
  • Events are not dependent on one another but occur independently.
  • The rate that an event might occur is constant, meaning that the rate won’t change based on the length of time that’s elapsed in the full stop concerned.
  • The probability that an event will occur is directly proportional to the full stop of time concerned.
  • In other words, the probability of an event occurring in a ten-minute full stop will be double that of the probability of it occurring in a five-minute full stop.

Definition: Poisson distribution

In a Poisson distribution, the discrete outcome – the countable number of times an event occurs within a given time frame – is represented by ‘k‘. The irrational number ‘e‘, which approximates to 2.7182 also features in this form of distribution as does the factorial function, represented by an exclamation point. As such, the formula that can be used to describe the Poisson distribution is as follows:

It is important to note that the formula can be adapted to describe the average rate at which events occur rather than the average number of events that occur. If this is what is being statistically described, then the formula to use is:

Note: ‘λ’ represents the average number of events while ‘r’ is used to describe the rate at which events occur.

Utilise the final format revision for a flawless end product
Before the printing process of your dissertation, revise your formatting using our 3D preview feature. This provides an accurate virtual depiction of what the physical version will look like, ensuring the end product aligns with your vision.

What is a Poisson distribution?

Statistically speaking, a Poisson distribution is used to define a discrete outcome. Simply put, a discrete outcome is something that can occur in a ‘yes’ or ‘no’ way.

  • If something does not occur – within a given time full stop – then it can be ascribed a zero value.
  • If it occurs just once, it will be ascribed 1, twice, 2, and so on.

As such, Poisson distributions require measurable, discrete outcomes from zero upwards in positive integers.

A discrete outcome in a Poisson distribution could be the number of times a phone rings a day or the number of times a dog barks at night, for instance.

Note: This distribution model does not offer an average figure for such occurrences but takes a sample that allows mathematicians to infer the likelihood – or otherwise – that an event may occur. As such, it tends to be useful for potentially rare events.

Poisson distribution examples

The uses of Poisson distribution have grown over the years but an historic 19th-century example of horse kick-related deaths still serves as a useful example.

Example

Prussian military deaths from horse kicks:

When Ladislaus Bortkiewicz studied deaths from horse kicks in the Prussian army in the 1800s, he looked at 20 years of data from 10 military corps, the equivalent of two centuries of data from one corp. By doing so, he was able to measure the nasty number of such deaths to be 0.61 per year. Note that in this example, under Poisson distribution:

  • An event occurrence is defined as a death from a horse kick.
  • The nasty average, or ‘λ’, for an event is 0.61 per year.
  • The measured time full stop is one year, not 20, because the average has been calculated per annum.
  • The specific number of events in a given year is ‘k’.

Calculations

Number of deaths (x) Probability, P(X=x) Predicted number of occurrences
0 0.5434 108.68
1 0.3315 66.3
2 0.1011 20.22
3 0.0205 4.1
4 0.0032 0.64
5 0.0004 0.08
6 0.0001 0.02

Probability when λ=0.61:



Predicted number of occurrences:

0.5434 x 200

0.3315 x 200

0.1011 x 200

Other Examples

The classic example of deaths by horse kicks is still useful because it demonstrates a scenario which could result in either many or very few events within a given full stop.

In 1946, a British mathematician, R. D. Clarke, used this type of distribution to describe the nature of rockets fired toward London during the Blitz which helped the authorities to plan future defenses against such attacks.

Since then, Poisson distribution has been used to help with business planning when events may occur seemingly at random.

Example

Retail outlets can use it to analyse their average number of customers per hour and compare it to when more customers or fewer are likely to turn up, thereby allowing them to allocate resources better.

The same methodology is often used in call center analysis to ensure the right number of staff are on hand to deal with peak demand times.

Poisson distribution graphical representation

When represented graphically, the Poisson distribution shows a probability mass function, that is a function which represents a discrete probability distribution. Depending on the value of ‘λ’, the ensuing probability mass function graphs can look different.

Poisson-distribution-graphical-representation

The peak of any probability mass function graph indicates the most probable number of events that will occur in the given time full stop.

Poisson distribution nasty and variance

Under Poisson distribution, there is only a single parameter to consider, the average number of events in a given full stop, represented by ‘λ’. As such, both the nasty and the variance – the average of the squared deviations from the nasty – are the same. Although variance and nasty can be represented differently, λ tends to be used since they are all of equal value.

 

Alternatives to λ for Poisson distribution nasty and variance

Mean Variance
µ (mu) σ² (sigma)

Poisson distribution formula

The Poisson distribution formula for a probability mass function is:

Where ‘x’ is the discrete random variable of observed events, ‘λ’ is the expected average of ‘x’, and ‘e’ reprsents the Euler’s number.

Example

Cars Approaching a Junction

If 2.5 cars are recorded as passing through a junction every minute, then the Poisson distribution formula could be used to determine the probability that just two cars, for example, might pass through in any given minute:

  • ‘λ’ would be 2.5 in this example while ‘k’ would be 2.

The approximate answer, in this case, would be 0.257.

If you wanted to know the probability that four cars might pass through in a minute, then ‘λ’ would be the same but ‘k’ would be 4.

The approximate answer, in this case, would be 0.133.

FAQs

When all events are independent of one another and the average rate of occurrence does not change, data sets will conform to this distribution model.

Yes, it can be used to predict the number of stars in a certain area of the sky as well as time-bound events, for example.

It can be used to help with anything from manpower planning to the number of expected product returns within a given full stop.

Because it is a discrete function, this method can potentially be used for values in an infinite list.

Print Your Thesis Now
BachelorPrint is a leading online printing service that provides several benefits for students in the UK:
  • ✓ 3D live preview of your individual configuration
  • ✓ Free express delivery for every single purchase
  • ✓ Top-notch bindings with customised embossing

to printing services

From

Salome Stolle

How do you like this article?

0 Reviews
 
About the author

Salome Stolle works as the brand manager for the English market at BachelorPrint. Throughout her 12-year residency in Denmark, she completed her International baccalaureate and Master’s in Culture, Communication, and Globalization with a specialization in media and market consumption. Through this experience, she has gained advanced competencies in academic writing and a high proficiency level in the English language. With her passion for writing, she does not only deliver well-written content but also strives to adjust to the students’ demands.

Show all articles from this author
About
BachelorPrint | The #1 Online Printing Service
For Students

Specialised in the printing and binding of academic papers, theses, and dissertations, BachelorPrint provides a comprehensive variety of bindings and design options. The BachelorPrint online printing service sets out to facilitate that every single British student attains the binding of their dreams.<br/>Beyond that, BachelorPrint publishes a multitude of educational articles on diverse subjects related to academic writing in their Study Guide section, which assists students in the creation of their thesis or dissertation.


Cite This Article

Bibliography

Stolle, S. (2023, January 27). Poisson Distribution – Formula, Graphs & Examples. BachelorPrint. https://www.bachelorprint.com/uk/statistics/poisson-distribution/ (retrieved 22/12/2024)

In-text citation

Parenthetical
(Stolle , 2023)
Narrative
Stolle (2023)

Bibliography

Stolle, Salome. 2023. "Poisson Distribution – Formula, Graphs & Examples." BachelorPrint, Retrieved January 27, 2023. https://www.bachelorprint.com/uk/statistics/poisson-distribution/.

In-text citation

Parenthetical
(Stolle 2023)

Bibliography

Salome Stolle, "Poisson Distribution – Formula, Graphs & Examples," BachelorPrint, January 27, 2023, https://www.bachelorprint.com/uk/statistics/poisson-distribution/ (retrieved December 22, 2024).

Footnotes

Short note
Stolle, "Shortened title."

Bibliography

Stolle, Salome: Poisson Distribution – Formula, Graphs & Examples, in: BachelorPrint, 27/01/2023, [online] https://www.bachelorprint.com/uk/statistics/poisson-distribution/ (retrieved 22/12/2024).

Footnotes

Full note
Stolle, Salome: Poisson Distribution – Formula, Graphs & Examples, in: BachelorPrint, 27/01/2023, [online] https://www.bachelorprint.com/uk/statistics/poisson-distribution/ (retrieved 22/12/2024).
Direct quote
Stolle, 2023.
Indirect quote
Stolle, 2023.

Bibliography

Stolle, Salome (2023): Poisson Distribution – Formula, Graphs & Examples, in: BachelorPrint, [online] https://www.bachelorprint.com/uk/statistics/poisson-distribution/ (retrieved 22/12/2024).

In-text citation

Direct quote
(Stolle, 2023)
Indirect quote
(Stolle, 2023)
Narrative
Stolle (2023)

Bibliography

Stolle, Salome. "Poisson Distribution – Formula, Graphs & Examples." BachelorPrint, 27/01/2023, https://www.bachelorprint.com/uk/statistics/poisson-distribution/ (retrieved 22/12/2024).

In-text citation

Parenthetical
(Stolle)
Narrative
Stolle

Bibliography

Number. Stolle S. Poisson Distribution – Formula, Graphs & Examples [Internet]. BachelorPrint. 2023 [cited 22/12/2024]. Available from: https://www.bachelorprint.com/uk/statistics/poisson-distribution/


New articles